Hall Ticket Number:												

Code No.: 42422 A

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Mech. Engg.) IV Year II-Semester Main Examinations, May-2019

Additive Manufacturing Technologies

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.N	0.	Stem of the question	M	L	CO	PO
		$Part-A (10 \times 2 = 20 Marks)$				
1.	Wh	at are the three aspects of interest in describing a prototype?	2	1	1	1
2.	Cla	ssify AM processes based on the initial form of raw material.	2	1	1	1
3.	Wh	at do you mean by post-curing?	2	1	2	1
4.	Wh	at is the principle of SLA process?	2	1	2	1
5.	Dis	cuss the pre-processing in LOM process.	2	1	3	1
6.	Wh	at are the strengths of FDM technology?	2	1	3	1
7.	Con	mpare selective laser sintering (SLS) process with powder metallurgy sintering.	2	1	4	1
8.	Wh	at are the limitations of 3-Dimentional Printing process?	2	1	4	1
9.	Dis	tinguish between direct and indirect tooling methods.	2	1	5	1
10.	Wh	nat do you mean by organ-printing?	2	1	5	1
		Part-B $(5 \times 10 = 50 \text{ Marks})$				
11.	-	What is Rapid Prototyping? Discuss the four areas on which the development of Rapid prototyping depends?	5	1	1	1
		Distinguish cleaning, post-curing and finishing which are the various tasks of postprocessing. Name two AM processes that do not require post-curing and one that does not require cleaning.	5	1	1	4
12.	-	State and explain the process flow of the Cubital's Solid Ground Curing (SGC) process.	5	2	2	
		How investment casting parts can be made using following? (i) 3D System's SLA (ii) Cubital's SGC system	5	3	2	
13.	a)	State and explain the critical factors that will influence the performance and function of the following systems: (i) Cubic's LOM (ii) Stratasys's FDM	6	5	3	
	b)	What are the advantages and disadvantages of solid-based systems compared with liquid-based systems?	4	1	3	
14	. a)	Using a sketch to illustrate your answer, describe the Selective Laser Sintering (SLS) process.	6	1	4	
	b)	Discuss the advantages and disadvantages of powder-based AM systems compared with: (i) Liquid-based AM systems (ii) Solid-based AM systems	4	3	4	
15	. a)	List the types of industries that AM can be used. Explain any two specific industrial applications.	4	3	5	
	b)	Compare and contrast the use of AM patterns for the following: (i) casting of die inserts (ii) sand casting	6	3	5	

	belongs to	that category.						
	S. No.	Manufacturing Process	Subtractive	Additive	Formative			
	1	CNC milling						
	2	Injection moulding						
	3	FDM						
	4	CNC nibbling			,			
	5	Press working	C. Indiana	Luelendre				
							-	
. Aı	nswer any	ou generate mask in SGC two of the following: M systems, what do you the tems?			And III don't us	5 2	3	
a)	In the LO	two of the following: M systems, what do you th	ink are the fact	ors that limit t	he work volume	5 5 5 5 3	3 4	

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	63
2	Knowledge on application and analysis (Level-3 & 4)	25
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	12

ශශශනනන